A fractional bit encoding technique for the GMM-based block quantisation of images
نویسندگان
چکیده
In this paper, a simple technique for encoding fractional bit components used in fixed-rate Gaussian mixture model-based (GMM) block quantisers is presented. While block transform image coding has not been very popular lately in the presence of current state-of-the-art wavelet-based coders, the GMM-based block quantiser, without the use of entropy coding, is still very competitive in the class of fixed-rate transform coders. It consists of a set of individual block quantisers operating at different bitrates, and the problem is that these bitrates are mostly fractional. Fixed-rate block quantisers based on an integer number of bits can be designed and through the use of heuristic algorithms, can approach the fractional target rate. However, the use of level-based scalar quantisers in the block quantiser allows better utilisation of the bit budget; a finer ‘spread’ of the bit budget across components; and better preservation of optimality. Our technique, which is based on a generalisation of positional value number systems, allows the use of level-based scalar quantisers in a fixed-rate coding framework. Experimental results comparing the use of the bits-based GMM-based block quantiser with the levels-based one in image coding show a finite improvement in the PSNR performance. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Low-complexity GMM-based block quantisation of images using the discrete cosine transform
While block transform image coding has not been very popular lately in the presence of current state-of-the-art wavelet-based coders, the Gaussian mixture model (GMM)-based block quantiser, without the use of entropy coding, is still very competitive in the class of fixed rate transform coders. In this paper, a GMM-based block quantiser of low computational complexity is presented which is base...
متن کاملSignificant bit-plane clustering technique for JPEG2000 image coding - Electronics Letters
Introduction: The JPEG2000 standard [1] has shown better performance than the widely used JPEG standard [2]. Nevertheless, efforts to improve JPEG2000 never stop. Long et al. [3] modified the quantisation step-size selection schemes for the uniform scalar quantisation used in JPEG2000 to improve the lossy compression. Lian et al. [4] proposed two skipping methods applied to the embedded block c...
متن کاملA comparative study of LPC parameter representations and quantisation schemes for wideband speech coding
In this paper, we provide a review of LPC parameter quantisation for wideband speech coding as well as evaluate our contributions, namely the switched split vector quantiser (SSVQ) and multi-frame GMM-based block quantiser. We also compare the performance of various quantisation schemes on the two popular LPC parameter representations: line spectral frequencies (LSFs) and immittance spectral pa...
متن کاملPlanelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images
With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...
متن کاملScalable distributed speech recognition using Gaussian mixture model-based block quantisation
In this paper, we investigate the use of block quantisers based on Gaussian mixture models (GMMs) for the coding of Mel frequency-warped cepstral coefficient (MFCC) features in distributed speech recognition (DSR) applications. Specifically, we consider the multi-frame scheme, where temporal correlation across MFCC frames is exploited by the Karhunen–Loève transform of the block quantiser. Comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Digital Signal Processing
دوره 15 شماره
صفحات -
تاریخ انتشار 2005